Abstract

The advancement of wearable sensing technologies has been pivotal in revolutionizing healthcare, environmental monitoring, and personal fitness. Among the diverse materials employed in these technologies, multifunctional hydrogel composites have emerged as critical components due to their unique properties, including high water content, flexibility, and biocompatibility. This review provides a comprehensive overview of the state-of-the-art in binary solvent-assisted hydrogel composites for wearable sensing applications. It begins by defining hydrogel composites and their essential attributes for wearable sensors, specifically focusing on binary solvent-assisted methods that enhance their performance and functionality. The review then delves into the applications of these composites in health monitoring, environmental detection, and sports and fitness, highlighting their role in advancing wearable technologies. Despite their promising features, there are significant challenges related to durability, sensitivity, and integration that need to be addressed to fully exploit these materials in wearable devices. This review discusses these challenges and presents potential solutions, including the development of new materials, improvement in fabrication processes, and strategies for achieving multifunctionality and sustainable design. Looking forward, the paper outlines future directions for research in this field, emphasizing the need for innovative materials and technologies that can lead to more effective, reliable, and eco-friendly wearable sensors. This review aims to inspire further research and development in the field of wearable sensing, paving the way for new applications and advancements in healthcare, environmental monitoring, and personal fitness technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.