Abstract
There has been a rapid increase in research applying artificial intelligence (AI) to various subspecialties of orthopaedic surgery, including foot and ankle surgery. The purpose of this systematic review is to (1) characterize the topics and objectives of studies using AI in foot and ankle surgery, (2) evaluate the performance of their models, and (3) evaluate their validity (internal or external validation). A systematic literature review was conducted using PubMed/MEDLINE and Embase databases in December 2022. All studies that used AI or its subsets machine learning (ML) and deep learning (DL) in the setting of foot and ankle surgery relevant to orthopaedic surgeons were included. Studies were evaluated for their demographics, subject area, outcomes of interest, model(s) tested, model(s)' performance, and validity (internal or external). A total of 31 studies met inclusion criteria: 14 studies investigated AI for image interpretation, 13 studies investigated AI for clinical predictions, and 4 studies were grouped as "other." Studies commonly explored AI for ankle fractures, calcaneus fractures, hallux valgus, Achilles tendon pathologies, plantar fasciitis, and sports injuries. For studies reporting the area under the receiver operating characteristic curve (AUC), AUCs ranged from 0.64 (poor) to 0.99 (excellent). Two studies (6.45%) reported external validation. Applications of AI in the field of foot and ankle surgery are expanding, particularly for image interpretation and clinical predictions. Current model performances range from poor to excellent, and most studies lack external validation, demonstrating a need for further research prior to deploying AI-based clinical applications. Level III, retrospective cohort study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.