Abstract

Synthetic organic dyes, which are resistant to biodegradation, pose a notable health risk, potentially leading to cancer and respiratory infections. Researchers have addressed this concern by exploring physicochemical methods to remove organic dyes from wastewater. A particularly promising solution involves modified biochar adsorbents, which demonstrate high efficiency in organic dye removal. Biochar, a charcoal-like material derived from biomass pyrolysis, offers advantages such as low cost, eco-friendliness, high efficiency and reusability. Beyond its role in sustainable soil remediation, biochar proves effective in removing organic dyes from wastewater after undergoing physical or chemical modification. Acid–base activation or metal–heteroatom impregnation enhances biochar's adsorption capacity. This comprehensive review examines the attributes of biochar, common methods for production and modification, and the impacts of raw materials, pyrolysis temperature, heating rate and residence time. It further elucidates the biochar adsorption mechanism in the removal of organic dyes, assessing factors influencing efficiency, including biochar feedstock, solution pH, adsorption temperature, particle size, initial dye concentration, biochar dosage and reaction time. It explores challenges, opportunities, reusability and regeneration methods of biochar in treating organic dye wastewater. It also discusses recent advances in organic dye removal using adsorption-based biochar. The review ultimately advocates for enhancing biochar's adsorption performance through post-modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call