Abstract

In contrast to conventional non-destructive testing (NDT) and non-destructive evaluation (NDE) methodologies, including radiography, ultrasound, and eddy current analysis, coplanar capacitive sensing technique emerges as a novel and promising avenue within the field. This paper endeavors to elucidate the efficacy of coplanar capacitive sensing, also referred to as capacitive imaging (CI), within the realm of NDT. Leveraging extant scholarly discourse, this review offers a comprehensive and methodical examination of the coplanar capacitive technique, encompassing its fundamental principles, factors influencing sensor efficacy, and diverse applications for defect identification across various NDT domains. Furthermore, this review deliberates on extant challenges and anticipates future trajectories for the technique. The manifold advantages inherent to coplanar capacitive sensing vis-à-vis traditional NDT methodologies not only afford its versatility in application but also underscore its potential for pioneering advancements in forthcoming applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.