Abstract

Organic dye pollutants present in wastewater pose a significant global challenge. Among pollutants, the synthetic dye Rhodamine B (RB) stands out due to its non-biodegradable nature and associated neurotoxic, carcinogenic, and respiratory irritant properties. Extensive research has been conducted on the efficacy of adsorption and photodegradation techniques for the removal of RB from wastewater. While adsorption and advanced oxidation processes (AOPs) have gained considerable attention for their effectiveness in recent years, the underlying behaviors and mechanisms of these technologies remain incompletely understood. Therefore, a comprehensive summary of recent research progress in this domain is imperative to clarify the basics and present the up-to-date achievements.This review provides an in-depth exploration of the fundamentals, advancements, and future trajectories of RB wastewater treatment technologies, mainly encompassing adsorption and photodegradation. This work starts with a general introduction of outlining the sources, toxicity, and diverse applicable removal strategies. Subsequently, it thoroughly examines crucial techniques within non-photochemical, photochemical, and adsorption technologies, such as UV light assisted AOP, catalyst assisted AOP, ozonation, Fenton system, electrochemical AOP, and adsorption technology. The primary objective is to furnish a broad overview of these techniques, elucidating their effectiveness, limitations, and applicability. Following this, the review encapsulates state-of-the-art computational simulations pertaining to RB adsorption and interactions with clays and other adsorbents. Lastly, it delves into column adsorption of RB dye, and elucidates various influencing factors, including bed height, feed concentration, pollutant (RB) feeding or flow rate, and column regeneration. This panoramic review aims to provide valuable insights into suitable techniques, research gaps, and the applicability of non-photochemical, photochemical, and adsorption technologies in the treatment of wastewater containing RB dye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.