Abstract

AbstractSolid‐state lithium‐air batteries (SSLABs) are attracting widespread research interest as emerging energy storage systems with ultra‐high theoretical energy density. However, due to their relatively short development history, the practical capacity and cyclic performance of SSLABs still fail to meet application requirements. The selection of solid electrolytes and the design and optimization of air cathodes are key factors for developing high‐performance solid‐state lithium‐air batteries. In this review, we focus on recent scientific advances and challenges in SSLABs, providing a comprehensive overview of solid electrolytes, air cathodes, and interface issues. Strategies such as electrolyte modification, composite cathodes, interface engineering, and the addition of catalysts which have been effective in addressing issues related to low ionic conductivity of electrolytes, high interfacial impedance, sluggish kinetics of electrochemical reactions, and poor cycling stability, were reviewed and discussed. Furthermore, this review also discusses the prospects of SSLABs, aiming to inspire and provide references for the development of solid‐state lithium‐air batteries, as well as other metal‐air batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.