Abstract

AbstractBenefiting from the outstanding optical, thermal, electrical, and mechanical properties, carbon nanotubes (CNTs) hold significant potential in the fields of materials, physics, chemistry, biology, as well as emerging disciplines such as electronics and optoelectronics. This paper provides a comprehensive review of the latest developments of CNTs optoelectronic devices operating in the terahertz (THz) and infrared (IR) wave range. At the beginning of this review, the unique structural characteristics of CNTs are introduced, overviewing their fundamental electronic structure, and emphasizing their impact on optoelectronics behavior. Further, on various synthesis techniques are discussion employed for the growth of single nanotube and the preparation of CNTs films. The penultimate section, the optical properties of CNTs are analyzed within the THz and IR spectral region and overview the application of THz time‐domain spectroscopy in extracting key material parameters of CNTs, and further discuss the theoretical models describing THz conductivity in CNTs. In the end, the most promising CNTs‐based device concepts are highlighted for sources, detectors, modulators, absorbers, and sensors within in THz and IR frequency band. This comprehensive review provides a valuable insight into the utilization of CNTs across various aspects of THz and IR optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.