Abstract
The application of core-to-core (3d-to-4f) resonant inelastic x-ray scattering (RIXS) and high-energy-resolution fluorescence-detected x-ray absorption (HERFD-XAS) at actinide M4,5 edges, as techniques with the enhanced sensitivity to changes in the chemical state, was analyzed for trivalent actinide compounds. As an example, a series of actinide chlorides AnCl3 (An = U, Np, Pu, Am, Cm, Bk, and Cf) was used. The crystal-field multiplet formalism was applied to calculate the 3d-4f RIXS maps, and the HERFD-XAS spectra were extracted as cuts of these RIXS maps along the incident energy axis at the constant emitted energy, corresponding to the maximum of the RIXS intensity. A relation between HERFD and conventional XAS methods was also examined. Despite some differences between profiles of the An M5 HERFD and conventional XAS spectra of trivalent actinides, the results of calculations indicate that the HERFD method can be used at the An M5 edge for monitoring even small variations in the An chemical state. As a whole, better agreement between the HERFD and XAS spectra was found for the An M4 edges as compared to the An M5 edges. By using the pointcharge electrostatic model, the dependence of the An M4,5 HERFD-XAS spectra on the An coordination number was studied, which indicates the significant sensitivity of the distribution of the An 5f states to the ligand structural arrangement around the An sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.