Abstract
In this paper, we describe an advanced tuning approach for the design of PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for the Ziegler-Nichols plants, that is First Oder Plus Time-Delay (FOPTD) continuous-time LTI (Linear Time Invariant) systems. The objective is to provide to the designer an efficient tool to design PI or PID controllers where it is possible to select simultaneous performance specifications of gain margin, phase margin, and gain crossover frequency from a set of achievable performance design curves for Ziegler-Nichols plants. To succeed in this, we first construct the stabilizing set of PI or PID controllers corresponding to the Ziegler-Nichols plant. Next, we generate an achievable performance set displayed as design curves in the gain and phase margin plane, indexed by gain crossover frequencies. Each point in this achievable performance plot represents a prescribed gain margin, phase margin, and crossover frequency, obtained by a PI or PID controller contained in the stabilizing set. Then, by selecting a point from the achievable performance set, a unique PI or PID controller achieving these simultaneous specifications is found from the intersection of an ellipse and straight line parametrized from constant magnitude and constant phase loci in the space of controller gains. We present illustrative examples to validate the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.