Abstract

A novel approach for the treatment of VOCs (by using toluene used as a model compound) and the simultaneous conversion of carbon dioxide into valuable biomass has been investigated by using a combination of an activated sludge moving bed bioreactor (MBBR) and an algal photo-bioreactor (PBR).The first unit (MBBR, R1) promoted toluene removal up to 99.9 % for inlet load (IL) of 119.91 g m−3 d−1. The CO2 resulting from the degradation of toluene was then fixed in PBR (R2), with a fixation rate up to 95.8 %. The CO2 uptake was promoted by algae, with average production of algal biomass in Stage VI of 1.3 g L−1 d−1. In the contest of the circular economy, alternative sources of nutrients have been assessed, using synthetic urban wastewater (UWW) and dairy wastewater (DWW) for liquid renewal. The produced biomass with DWW showed a high lipid content, with a maximum productivity of 450.25 mg of lipids L−1 d−1. The solution proposed may be thus regarded as a sustainable and profitable strategy for VOCs treatment in a circular economy perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.