Abstract

Advanced treatment of coking wastewater was investigated experimentally with coagulation and zero-valent iron (ZVI) processes. Particular attention was paid to the effect of dosage and pH on the removal of chemical oxygen demand (COD) in the two processes. The results showed that ZVI was more effective than coagulation for advanced treatment of coking wastewater. The jar tests revealed that maximal COD removal efficiency of 27.5–31.8% could be achieved under the optimal condition of coagulation, i.e. 400 mg/L of Fe 2(SO 4) 3 as coagulant at pH 3.0–5.0. On the other hand, the COD removal efficiency could be up to 43.6% under the idealized condition of ZVI upon 10 g/L active carbon and 30 g/L iron being dosed at pH 4.0. The mechanisms for COD removal in ZVI were dominated by coagulation, precipitation and oxidation–reduction. ZVI would also enhance the biodegradability of effluent by increasing BOD 5/COD from 0.07 to 0.53. Moreover, some ester compounds could be produced in the reaction. Although ZVI was found more efficient than coagulation in eliminating low molecular weight (<2000 Da) compounds in the wastewater, there were still a few residual contaminants which could hardly be eliminated by either of the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.