Abstract

Experimental and theoretical results from around the world point to the possibility of high confinement, high- beta , and high-bootstrap-fraction steady-state tokamak operating modes. These modes of operation, if fully developed and extended to steady-state, could lead to much less expensive tokamak demonstration power reactors and to a significantly reduced cost-of-electricity from fusion, as compared to projections based on low- beta N, pulsed operating modes. Present results have clear implications in the areas of particle control, plasma shaping, and current-profile control. Thus they have strongly influenced the design of the steady-state advanced tokamak TPX, which has the mission to combine the best results from present experiments and extend them to steady-state. These results also have important implications for follow-up tests in ITER, which have the goal of studying advanced-tokamak operation in an ignited plasma, as well as for the eventual configuration of an advanced-tokamak fusion reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.