7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/tim.2011.2122370
Copy DOIPublication Date: Aug 1, 2011 | |
Citations: 32 |
A new concept of nonparametric signal detection and classification technique is proposed using mutual information measures in the time-frequency domain. The time-frequency-based self-information and mutual information are defined in terms of the cross time-frequency distribution. Based on time-frequency mutual information theory, this paper presents applications of the proposed technique to real-world vibration data obtained from a dedicated condition-based-maintenance experimental test bed. Baseline, unbalanced, and misaligned experimental settings of helicopter drivetrain bearings and shafts are quantitatively distinguished by the proposed techniques. With imbalance quantifiable by variance in the in-phase mutual information and misalignment quantifiable by variance in the quadrature mutual information developed and presented herein, machine health classification can be accomplished by use of statistical bounding regions.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.