Abstract

Due to the versatile structures and functionalities as well as good compatibility with polyamide (PA) matrix, organic nanomaterials are promising candidates as fascinating nanofillers in PA selective layer to improve separation efficiency of thin film nanocomposite (TFN) membranes, which consist of a nanomaterials-embedded PA layer and a porous support layer. This review specially focuses on the current development of organic nanomaterials based TFN membranes for various aqueous-/organic-based separation processes, as organic nanomaterials are effective in avoiding the non-selective defects caused by the poor interfacial compatibility between inorganic nanoadditives and PA matrix. The synthesis, modification and utilization of organic nanofillers for constructing state-of-the-art TFN membranes as well as the proposed transport mechanism are highlighted. Encouraging results have demonstrated that the embedded organic nanomaterials not only provide possibility in breaking the trade-off between membrane permeability and selectivity and improving antifouling performance, but also render membrane with attractive properties for targeted applications, such as antimicrobial performance and boron removal. Despite of the excellent properties imparted by functional organic nanomaterials, significant challenges still exist for in-depth study and scale-up of TFN membranes. Thus, this review also attempts to offer insights on future directions of advanced TFN membranes with organic-based nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.