Abstract

A ternary Mn–Al-Ga alloy with the nominal composition Mn55Al38.57Ga6.43 was produced by arc melting. After homogenisation, the alloy consisted of the ε and γ2 phases. Appropriate heat treatments were used to transform each of these into a phase with the L10 structure. These two L10 phases had different compositions, lattice parameters and magnetic properties. In order to test the stability of the L10 phases against decomposition, heat treatments were carried out at 700 ​°C for durations of up to 14 days. The results showed that the decomposition started with formation of the β-Mn phase and subsequent appearance of the γ2 phase. The resulting diffusion gradients resulted in composition changes in the L10 phases and after 7 days, only a single, intermediate composition remained. After 14 days, the decomposition was almost complete. The decomposition of the L10 phases in the ternary Mn–Al-Ga alloy was significantly slower than in binary Mn–Al alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.