Abstract

In this contribution, we report on the analysis of charge transport in graphene nanoribbons by means of timedomain and frequency-domain techniques. The former can be applied in order to describe the Maxwell/Schroedinger coupled system of equations, and the letter are used to solve the Poisson/Schroedinger system in a quasi static framework. A frequency-domain example about the self-consistent solution of laterally coupled graphene nanoribbons is reported. A time-domain example is also reported, showing the effect of the self-generated electromagnetic field, that may affect the dynamics of the charge wavepacket.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.