Abstract

Hazard modeling in cardiothoracic surgery, crucial for understanding patient outcomes, utilizes survival analysis like the Cox proportional hazards model. Kaplan-Meier curves are employed in survival analysis to represent the probability of survival over time. While Cox assumes proportional hazards, the Fine-Gray model deals with competing risks. Parametric models (e.g., Weibull) specify survival distributions, unlike Cox. Bayesian analysis integrates prior knowledge with data. Machine learning, including decision trees and support vector machines, enhances risk prediction by analyzing extensive datasets. However, it is important to note that whatever new approaches one may adopt will enhance the quality of risk assessment and not the risk assessment as such. Preprocessing is vital for data quality in complex cardiovascular datasets, alongside robust validation methods like cross-validation for model reliability across patient cohorts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.