Abstract

The Born-Oppenheimer separation of the Schrodinger equation allows the electronic and nuclear motions to be solved in three steps. 1) The solution of the electronic wave function at a discrete set of molecular conformations; 2) the fitting of this discrete set of energy values in order to construct an analytical approximation to the potential energy surface (PES) at all molecular conformations; 3) the use of this analytical PES to solve for the nuclear motion using either time-dependent or time-independent formulations to compute molecular energy values, chemical reaction rates, and cumulative reaction probabilities. This project involves the development of technology to address all three of these steps. This report focuses on our recent work on the optimization of nonlinear wave function parameters for the electronic wave functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call