Abstract
The slime mould algorithm (SMA) is a population-based swarm intelligence optimization algorithm that simulates the oscillatory foraging behavior of slime moulds. To overcome its drawbacks of slow convergence speed and premature convergence, this paper proposes an improved algorithm named PSMADE, which integrates the differential evolution algorithm (DE) and the Powell mechanism. PSMADE utilizes crossover and mutation operations of DE to enhance individual diversity and improve global search capability. Additionally, it incorporates the Powell mechanism with a taboo table to strengthen local search and facilitate convergence toward better solutions. The performance of PSMADE is evaluated by comparing it with 14 metaheuristic algorithms (MA) and 15 improved MAs on the CEC 2014 benchmarks, as well as solving four constrained real-world engineering problems. Experimental results demonstrate that PSMADE effectively compensates for the limitations of SMA and exhibits outstanding performance in solving various complex problems, showing potential as an effective problem-solving tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.