Abstract
This study proposes the application of fuzzy assessment tree (FAT)-based short-time modified Hilbert transform (STMHT) as a new multiclass detection and classification technique, for a distributed generation (DG)-based microgrid. The time varying non-stationary power signal samples extracted near the target DG are initially de-noised by passing through the morphological median filter and then processed through the proposed STMHT technique for disturbance detection. Further based on the overlapping in the target attribute values, an FAT has been incorporated, which significantly classifies the different multiclass disturbances on a standard IEC microgrid model simulated in MATLAB/Simulink environment with highest precision in accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.