Abstract
Large-scale graph applications are of great national, commercial, and societal importance, with direct use in fields such as counter-intelligence, proteomics, and data mining. Unfortunately, graph-based problems exhibit certain basic characteristics that make them a poor match for conventional computing systems in terms of structure, scale, and semantics. Graph processing kernels emphasize sparse data structures and computations with irregular memory access patterns that destroy the temporal and spatial locality upon which modern processors rely for performance. Furthermore, applications in this area utilize large data sets, and have been shown to be more data intensive than typical floating-point applications, two properties that lead to inefficient utilization of the hierarchical memory system. Current approaches to processing large graph data sets leverage traditional HPC systems and programming models, for shared memory and message-passing computation, and are thus limited in efficiency, scalability, and programmability. The research presented in this thesis investigates the potential of a new model of execution that is hypothesized as a promising alternative for graph-based applications to conventional practices. A new approach to graph processing is developed and presented in this thesis. The application of the experimental ParalleX execution model to graph processing balances continuation-migration style fine-grain concurrency with constraint-based synchronization through embedded futures. A collection of parallel graph application kernels provide experiment control drivers for analysis and evaluation of this innovative strategy. Finally, an experimental software library for scalable graph processing, the ParalleX Graph Library, is defined using the HPX runtime system, providing an implementation of the key concepts and a framework for development of ParalleX-based graph applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.