Abstract
In this paper, we introduce a concept of advanced self-organizing polynomial neural network (Adv_SOPNN). The SOPNN is a flexible neural architecture whose structure is developed through a modeling process. But the SOPNN has a fatal drawback; it cannot be constructed for nonlinear systems with few input variables. To relax this limitation of the conventional SOPNN, we combine a fuzzy system and neural networks with the SOPNN. Input variables are partitioned into several subspaces by the fuzzy system or neural network, and these subspaces are utilized as new input variables to the SOPNN architecture. Two types of the advanced SOPNN are obtained by combining not only the fuzzy rules of a fuzzy system with SOPNN but also the nodes in a hidden layer of neural networks with SOPNN into one methodology. The proposed method is applied to the nonlinear system with two inputs, which cannot be identified by conventional SOPNN to show the performance of the advanced SOPNN. The results show that the proposed method is efficient for systems with limited data set and a few input variables and much more accurate than other modeling methods with respect to identification error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.