Abstract

The max-cut problem consists of finding a partition of the nodes of a weighted graph into two subsets such that the sum of the weights on the arcs connecting the two subsets is maximized. This is an NP-hard problem that can also be formulated as an integer quadratic program. Several solution methods have been developed since the 1970s and applied to a variety of fields, particularly in engineering and layout design. We propose a heuristic method based on the scatter-search methodology for finding approximate solutions to this optimization problem. Our solution procedure incorporates some innovative features within the scatter-search framework: (1) the solution of the maximum diversity problem to increase diversity in the reference set, (2) a dynamic adjustment of a key parameter within the search, and (3) the adaptive selection of a combination method. We perform extensive computational experiments to first study the effect of changes in critical scatter-search elements and then to compare the efficiency of our proposal with previous solution procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.