Abstract

At the core of this research is the pursuit of enhancing the trajectory tracking performance of six-degree-of-freedom collaborative robots, with a particular focus on addressing the challenges posed by uncertainties in real-world applications. One of the primary issues encountered with existing methods is the susceptibility of trajectory tracking to uncertainties, which can significantly hinder the performance of robotic systems. To address these challenges, we propose an advanced control method, known as the model-based proportional-derivative controller, or MPDP controller for short, which represents an innovative fusion of model-based PD control principles with a robust control algorithm. This amalgamation is driven by the need to mitigate the impact of uncertainties and external disturbances on trajectory tracking. A comprehensive assessment grounded in Lyapunov theory has been undertaken to validate the effectiveness of our approach. The analysis has firmly established that our method ensures not only the ultimate boundedness but also the uniform boundedness of the robotic system, which is critical for its operational stability. Both experimental and simulation studies have been meticulously conducted to benchmark the performance of the MPDP controller against the conventional proportional-integral-derivative controller, which serves as a widely adopted baseline in the field. The results unequivocally demonstrate the superiority of the MPDP controller across multiple dimensions. It exhibits exceptional robustness, resulting in a smaller steady-state tracking error, a critical advantage when addressing inherent uncertainties and external disturbances that can perturb the robot system. This translates to a more stable trajectory tracking performance. Furthermore, the MPDP controller empowers the robot with the capability to precisely follow predefined trajectories, thus ensuring high-precision and reliable execution of tasks. This feature significantly contributes to an overall enhancement of system performance and productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.