Abstract

The longitudinal and transverse resistivities of differently strained (Ga,Mn)As layers are theoretically and experimentally studied as a function of the magnetization orientation. The strain in the series of (Ga,Mn)As layers is gradually varied from compressive to tensile using (In,Ga)As templates with different In concentrations. Analytical expressions for the resistivities are derived from a series expansion of the resistivity tensor with respect to the direction cosines of the magnetization. In order to quantitatively model the experimental data, terms up to the fourth order have to be included. The expressions derived are generally valid for any single-crystalline cubic and tetragonal ferromagnet and apply to arbitrary surface orientations and current directions. The model phenomenologically incorporates the longitudinal and transverse anisotropic magnetoresistance as well as the anomalous Hall effect. The resistivity parameters obtained from a comparison between experiment and theory are found to systematically vary with the strain in the layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.