Abstract
The integration of cutting-edge remote sensing technologies, biophysical principles, and advanced spatial statistics enables innovative landscape analysis across various spatial and temporal scales. Traditional approaches relied on classification methods and indices derived from multi-spectral imagery to assess landscape degradation. However, modern techniques can extract biophysical indices like leaf area index and canopy chemistry from satellite imagery. Long-term remote sensing archives (e.g., Landsat, AVHRR) facilitate retrospective studies of landscape changes and trajectories. Recent advancements in sensors and analysis techniques, such as sub-pixel classifications and continuous fields, have improved the accuracy of variable retrieval (e.g., Albedo, chlorophyll concentration). These developments enable powerful monitoring tools for land use/cover change detection, leading to a better understanding of landscape dynamics and the mapping of previously unexplored features. However, a trade-off exists between high spatial and high temporal resolution depending on the platform used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.