Abstract

Quantum communication and quantum computation are novel methods of information transfer and information processing, all fundamentally based on the principles of quantum physics. The performances outdo their classical counterparts in many aspects [1,2]. In almost all quantum communication and quantum computation schemes, quantum entanglement [3] plays a decisive role. In essence, an entangled system can carry all information (e.g., on their polarization properties) only in their correlations, while no individual subsystem carries any information. This leads to correlations that are much stronger than classically allowed [89, 100], which is a powerful resource for information processing. It is therefore important to be able to generate, manipulate, and distribute entanglement as accurately and as efficiently as possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.