Abstract

To bring osteoinductive properties to calcium phosphate (CaP) bioceramics, a silicon-substituted hydroxyapatite was functionalized by integrin-adhesive cyclic-pentapeptides (c-(DfKRG)). A new two-step protocol was set up to immobilize peptides at low and controlled density on the ceramic surface and limit contamination by adsorbed molecules. To this aim, a spacer bearing c-(DfKRG)-S-PEG6-NHS molecule was synthesized and bonded to an organosilane previously covalently bonded to the ceramic surface. The functionalized ceramic was tested in vitro for MC3T3-E1 murine pre-osteoblasts. CaP ceramic surface retained good biological properties thanks to low density of bonded molecules preserving part of the bioactive CaP surface free of bioorganic molecules. The final SiHA-T-PEG6-S-c-(DfKRG) was shown to increase cell density and to improve proliferation. Furthermore, the use of a strong and stable covalent bond between inorganic and organic parts prevented early burst release of the peptide and increased the persistence of its bioactivity over time. So, this CaP ceramic associating c-(DfKRG) by covalent grafting could be considered as promising new biomaterials for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.