Abstract

The driving force behind the efforts to develop magnesium metal matrix composites (MMC) via high-pressure die casting is the requirements for advanced applications under severe operational conditions in terms of stress, temperature, and corrosion resistance. Therefore this study aims to explore the mechanical properties of die cast Mg-MMC in terms of hardness and strength, as well as its corrosion resistance. AZ91D was chosen as the most commonly used magnesium alloy. The choice as the reinforcement agent that has to be an economical and non-reactive addition was silicon carbide particles (SiCP) with an average particle size of 10 μm. The challenge was production of high quality, homogeneous material with good mechanical properties and acceptable corrosion resistance. The results revealed the advantages of a die cast Mg-MMC as a new attractive alternative for advanced structural applications that can be used for mass production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.