Abstract
Process analytical technologies (PAT) are identified as an essential element in the Quality by Design framework, providing the cornerstone to implement continuous pharmaceutical manufacturing. This study is concerned with employing three in-line PATs: Eyecon™ 3D imaging system, Near-infrared spectroscopy (NIRS) and Raman spectroscopy (RS), in a continuous twin-screw granulation process to enable real-time monitoring and prediction of critical quality attributes of granules. The Thermo Scientific™ Pharma 11 twin-screw granulator was used to manufacture granules from a low-dose formulation with caffeine anhydrous as the model drug. A 30-run full factorial design including three critical process parameters (liquid to solid ratio, barrel temperature and throughput) was conducted to evaluate the performance of each analytical tool. Eyecon™ successfully captured the granule size and shape variation from different experimental conditions and demonstrated sufficient sensitivity to the fluctuation of size parameter D10 in the presence of process perturbations. The partial least square regression (PLSR) models developed using NIRS showed small relative standard error of prediction values (less than 5%) for most granule physical properties. In contrast, the RS-based PLSR models revealed higher prediction errors towards granule drug concentration, potentially due to the inhomogeneous premixing of raw materials during calibration model development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.