Abstract

AbstractThe repair and regeneration of cartilage is a challenge for scientists and clinical surgery. Achieving cell adhesion and regeneration, anti‐inflammatory, lubrication, targeted drug delivery and controlled release simultaneously in cartilage treatment are the goals of researchers. Polymer composites and hybrids have the potential to realize above functions in cartilage tissue engineering. This review refers to cartilage injuries, current clinical techniques, and their benefits and limitations, focusing on the most relevant and state of art of advanced polymers for cartilage tissue engineering. The frontier applications of multifunctional polymer composites and hybrids in cartilage tissue engineering are discussed in depth, including polymer scaffold, polymer bio‐lubricant, and zwitterionic polymer for drug delivery and sustained drug release. A summary of comprehensive properties of polymers such as processability, mechanical properties, biocompatibility, biodegradability, hydrophilicity, cytotoxicity, etc., and their mechanisms are analyzed. Furthermore, some key challenges and outstanding concerns on polymer‐based materials for cartilage tissue engineering are presented followed by future perspectives.Highlights The state of art of advanced polymers for cartilage tissue engineering. The advanced bionic property and mechanism of polymer composites and hybrids. Polymers for scaffold, biolubricant, drug delivery, sustained drug release. Future perspectives on polymer composites, hybrids‐based cartilage materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.