Abstract

Lithium batteries with solid-state electrolytes are an appealing alternative to state-of-the-art non-aqueous lithium-ion batteries with liquid electrolytes because of safety and energy aspects. However, engineering development at the cell level for lithium batteries with solid-state electrolytes is limited. Here, to advance this aspect and produce high-energy lithium cells, we introduce a cell design based on advanced parametrization of microstructural and architectural parameters of electrode and electrolyte components. To validate the cell design proposed, we assemble and test (applying a stack pressure of 3.74 MPa at 45 °C) 10-layer and 4-layer solid-state lithium pouch cells with a solid polymer electrolyte, resulting in an initial specific energy of 280 Wh kg−1 (corresponding to an energy density of 600 Wh L−1) and 310 Wh kg−1 (corresponding to an energy density of 650 Wh L−1) respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.