Abstract
Accurate performance estimation of photovoltaic devices is important in optimizing the efficiency and cost of the photovoltaic systems. The one-diode and two-diode models are used because they concisely represent the current-voltage (I-V) variations. However, these models mainly focus on the fundamental mechanism of diffusion and Shockley-Read-Hall recombination. Four-diode model (FDM) is developed from the standard three-diode model used to enhance the precision of PV system performance estimations. However, the better-detailed FDM offers modeling of other recombination and leakage currents that occur in rather complex solar cells or advanced cells like heterojunction, multijunction, or perovskite ones. This model helps to get a more accurate picture of the PV cell operation as several diodes are added to model recombination processes and defects. This work makes use of sophisticated forms of parameter extraction aimed at promoting the optimization of algorithms such as the one known as Advanced Dynamic Inertia-Particle Swarm Optimization with Velocity Clamping or ADIPSO-VC. For comparison with FDM, a three-diode model (THDM) is utilized, and the outcome of the former is then analyzed against the latter. In addition, as a confirmation of the reliability and repeatability of the results obtained by applying the developed algorithm for parameter extraction, FDM is compared with classical methods. To demonstrate the efficacy of the proposed method it is tested against the other algorithms Simulated annealing, and conventional PSO. Based on the comparison, it is evident that ADIPSO-VC surpasses the other methods by demonstrating lower error rates and shorter computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: e-Prime - Advances in Electrical Engineering, Electronics and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.