Abstract

A novel, green and efficient post-column oxidation method using Fe(3)O(4) magnetic nanoparticles (MNPs) was developed to on-line convert hydride generation/cold vapor generation (HG/CV) inactive species to their active species without microwave/UV irradiation. It was applied to high performance liquid chromatography HG/CV atomic fluorescence spectrometry (HPLC-HG/CV-AFS) to enable sensitive speciation analysis of both HG/CV inactive and active species. Inorganic mercury (Hg(2+)), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) were selected as model compounds to validate the methodology. Separation of these mercury species was accomplished on a RP-C18 column with a mixture of acetonitrile and water (10 : 90) at pH 6.8 containing 0.12% (m/v) L-cysteine as the mobile phase. In the presence of 0.6% (v/v) H(2)O(2), on-line conversion of the organomercury species eluted from the HPLC column to Hg(2+) was obtained using the advanced oxidation method at pH 2.0. Optimum conditions for the separation, oxidation and cold vapor generation were carefully investigated. The limits of detection (LODs) were 0.7, 1.1, 0.8 and 0.9 μg L(-1) (as Hg) for Hg(2+), MeHg, EtHg and PhHg, respectively, corresponding to 14, 22, 16 and 18 pg absolute detection limits for Hg(2+), MeHg, EtHg and PhHg by using a 20 μL sample loop, which are comparable to or better than those previously reported. National Research Council Canada DORM-2 fish muscle tissue and several real water samples were analyzed to validate the accuracy of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.