Abstract

The degradation of an industrial wastewater (Tire Cord factory) with low BOD5/COD ratio (0.1-0.2) was investigated using advanced oxidation processes (AOPs) (i.e. hydrogen peroxide, UV/H2O2, O3/H2O2 and UV/O3/H2O2 treatments). In order to investigate the effects of influential variables on the process performance, four independent factors involving two numerical factors (initial H2O2 concentration and initial pH) and two categorical factors (ozonation and UV irradiation) were selected. The process was modeled and analyzed using response surface methodology (RSM). The region of exploration for the process was taken as the area enclosed by initial H2O2 concentration (0-20 mM) and initial pH (3-11) boundaries at three levels. For two categorical factors (ozonation and UV irradiation), the experiments were performed at two levels (with and without application of each factor). Two dependent parameters (TCOD removal and BOD5/COD ratio) were studied as the process responses. As a result, initial H2O2 concentration showed a reverse impact on the responses; an increasing effect at low concentrations (0-10 m mol/l) and a decreeing effect at higher concentrations (10-20 m mol/l). The maximum and minimum the responses were obtained at H2O2 concentration of 10 and 20 mmol/l and initial pH 3 and 11, respectively. O3/UV/H2O2 system showed better performance with 32 % for TCOD removal efficiency and 0.41 for BOD5/COD ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call