Abstract

For simultaneous and quantitative thermophysical measurements of ultrasmall liquid volumes, we have recently developed and reported heated fluidic resonators (HFRs). In this paper, we improve the precision of HFRs in a vacuum by significantly reducing the thermal loss around the sensing element. A vacuum chamber with optical, electrical, and microfluidic access is custom-built to decrease the convection loss by two orders of magnitude under 10-4 mbar conditions. As a result, the measurement sensitivities for thermal conductivity and specific heat capacity are increased by 4.1 and 1.6 times, respectively. When differentiating between deionized water (H2O) and heavy water (D2O) with similar thermophysical properties and ~10% different mass densities, the signal-to-noise ratio (property differences over standard error) for H2O and D2O is increased by 9 and 5 times for thermal conductivity and specific heat capacity, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.