Abstract

This is the first part of a series of two papers on unsteady computational fluid dynamics (CFD) methods for the numerical simulation of aerodynamic noise generation and propagation. In this part, the stability, accuracy, and efficiency of implicit Runge–Kutta schemes for the temporal integration of the compressible Navier–Stokes equations are investigated in the context of a CFD code for turbomachinery applications. Using two model academic problems, the properties of two explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) schemes of second- and third-order accuracy are quantified and compared with more conventional second-order multistep methods. Finally, to assess the ESDIRK schemes in the context of an industrially relevant configuration, the schemes are applied to predict the tonal noise generation and transmission in a modern high bypass ratio fan stage and comparisons with the corresponding experimental data are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call