Abstract
The classification of ECG signals is a critical process because it guides the diagnosis of the proper treatment process for the patient. However, any form of disturbance with ECG signals can be highly conspicuous because of the mechanics involved in data acquisition from living beings, which has a significant impact on the classification procedure. The purpose of this research work is to advance ECG signal classification results by employing numerous denoising methods and, in turn, boost the accuracy of cardiovascular diagnoses. To simulate realistic conditions, we added various types of noise to ECG data, including Gaussian, salt and pepper, speckle, uniform, and exponential noise. To overcome the interference of noise from environments in the obtained ECG signals, we employed wavelet transform, median filter, Gaussian filter, and the hybrid of the wavelet and median filters. The proposed hybrid denoising method has better results than the other methods because of the use of wavelet multi-scale analysis and the ability of the median filter to avoid the loss of vital ECG characteristics. Thus, despite a certain proximity in the values, the hybrid method is significantly more accurate and reliable, as evidenced by the mean squared error (MSE), mean absolute error (MAE), R-squared, and Pearson correlation coefficient. More specifically, the hybrid approach provided an MSE of 0.0012 and an MAE of 0.025, the R-squared value for this study was 0.98, and the Pearson correlation coefficient was 0.99, which provides a very good resemblance to the original ECG confirmation. The proposed classification model is based on the modified lightweight CNN or MLCNN that was trained using the noisy and the denoised data. The findings demonstrated that by applying the denoised data, the testing accuracy, precision, recall, and F1 scores achieved 0.92, 0.91, 0.90, and 0.91 for the datasets, while the noisy data achieved 0.80, 0.78, 0.82, and 0.80, respectively. In this study, the signal quality and denoising methods were found to enhance ECG signal classification and diagnostic accuracy while encouraging proper preprocessing in future studies and applications for real-time ECG for cardiac care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.