Abstract

Intercalation-type Nb2O5, based on its inherent structural advantages in energy storage, shows excellent energy storage characteristics in sodium-ion batteries (SIBs). The rapid pseudocapacitive Na-ion insertion/extraction dynamic mechanisms result in its outstanding rate performance. However, the inherent low electronic conductivity hinders its application and development in SIBs. Though various modification projects can effectively ameliorate these shortcomings, there are also some basic research problems that need to be clarified and solved. This review summarizes the latest research progress of Nb2O5 in SIBs. The structural advantages and pseudocapacitive characteristics of sodium storage are emphasized. The recent advanced modification strategies are summarized comprehensively, including carbon modification, structural optimization, defect engineering, increased mass loading, flexible electrodes, synergistic effect electrodes, etc. In addition, this review summarizes and prospects the key research strategies and future development directions of Nb2O5 in future practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.