Abstract

A simple hydrothermal process was proposed to prepare the flower-like Bi2WO6 architectures, and the as-synthesized Bi2WO6 photocatalysts were further processed with the prepared graphene oxide (GO) to form novel reduced graphene oxide (RGO)/Bi2WO6 composites. The nano-materials were characterized with the help of XRD, XPS, SEM, FTIR, UV-DRS, PL techniques to investigate their morphological, physical, optical, and photochemical properties. Photocatalytic performances of the pure flower-like Bi2WO6 architectures and RGO/Bi2WO6 composites were compared and evaluated through the degradation of ciprofloxacin hydrochloride (Cipro HCl) wastewater under the simulated visible light. It was found that the RGO/Bi2WO6 composites displayed enhanced visible light-driven photocatalytic activities. It might be that the RGO loading not only effectively suppressed the electron–hole recombination, but also increased the light absorption ability. The effects of operating condition involved in the photocatalytic process were further examined, and the cycle-stability experiment demonstrated that as-obtained 2% RGO/Bi2WO6 photocatalysts had good photocatalytic repeatability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.