Abstract

Unraveling the concentration-dependent spatiotemporal organization of receptors in the plasma membrane is crucial to understand cell signal initiation. A paradigm of this process is the oligomerization of CD95 during apoptosis signaling, with different oligomerization models being discussed. Here, we establish the molecular-sensitive approach cell lifetime Förster resonance energy transfer image spectroscopy to determine CD95 configurations in live cells. These data are corroborated by stimulated emission depletion microscopy, confocal photobleaching step analysis, and fluorescence correlation spectroscopy. We probed CD95 interactions for concentrations of ~10 to 1000 molecules per square micrometer, over nanoseconds to hours, and molecular to cellular scales. Quantitative benchmarking was achieved establishing high-fidelity monomer and dimer controls. While CD95 alone is primarily monomeric (~96%) and dimeric (4%), the addition of ligand induces oligomerization to dimers/trimers (~15%) leading to cell death. This study highlights molecular concentration effects and oligomerization dynamics. It reveals a minimal model, where small CD95 oligomers suffice to efficiently initiate signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.