Abstract

This work addresses the role of multifunctional sensor systems in defence and security applications. The challenging topic of imaging sensors and their use in object detection is explored. We give a brief introduction to selected sensors operating at various wavelength bands in the electromagnetic spectra. Focus here is on sensors generating time or range resolved data and spectral information. The sensors presented here are imaging laser radar, multi- and hyper-spectral sensors and radar systems. For each of these imaging systems, we present and discuss analysis and processing of the multidimensional (n-dimensional) data obtained from these sensors. Moreover, we will discuss the benefits of using collaborative sensors, based on results from several ongoing Swedish research projects aiming to provide end-users of such advanced sensor systems with new and enhanced capabilities. Major applications of this kind of systems are found in the areas of surveillance and situation awareness, where the complementary information provided by the imaging systems proves useful for enhanced systems capacity. Typical capabilities that we are striving for are, e.g., robust identification of objects being possible threats on a sub-pixel basis from spectral data, or penetrating obscurant such as vegetation or certain building construction materials. Hereby we provide building blocks for solutions to, e.g., detecting unexploded ammunition or mines and identification of suspicious behavior of persons. Furthermore, examples of detection, recognition, identification or understanding of small, extended and complex objects, such as humans, will be included throughout the chapter. We conclude with some remarks on the use of imaging sensors and collaborative sensor systems in security and surveillance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.