Abstract

This paper presents the scientific outcomes of the 2018 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2018 Contest addressed the problem of urban observation and monitoring with advanced multi-source optical remote sensing (multispectral LiDAR, hyperspectral imaging, and very high-resolution imagery). The competition was based on urban land use and land cover classification, aiming to distinguish between very diverse and detailed classes of urban objects, materials, and vegetation. Besides data fusion, it also quantified the respective assets of the novel sensors used to collect the data. Participants proposed elaborate approaches rooted in remote-sensing, and also in machine learning and computer vision, to make the most of the available data. Winning approaches combine convolutional neural networks with subtle earth-observation data scientist expertise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.