Abstract
It is crucial to ensure the safety and integrity of underground gas storage (UGS) infrastructure for energy reliability in California, and many other places around the world. To address the risk management need in UGS industry, we take advantage of recent advances in downhole fiber optic monitoring and coupled well-reservoir simulation to provide unprecedented understanding of gas flow in wells at UGS sites. We have combined advanced monitoring and simulation of UGS operations into a decision-support system called the Integrated Risk Management and Decision Support System (IRMDSS). The IRMDSS framework includes three components: (i) mechanistic models, (ii) continuous and frequent monitoring data, and (iii) a supervisory interface for performing analyses using the models and monitoring data. The goal of the IRMDSS is to equip UGS operators with real-time monitoring data and simulation tools that can alert them to potential failures, detect early leakage, and support mitigation decision-making to prevent otherwise larger failures. We demonstrate an application of the IRMDSS by analyzing the temperature and pressure response to a hypothetical leak. Through a review of distributed temperature sensing (DTS) data collected at an operating UGS facility we show that DTS can uniquely and precisely identify the depth of the gas-water-contact in the well annulus, and that DTS can provide an early warning signal of upward gas flow as would occur in a well blowout scenario. When combined with modeling analysis, a rough leak rate can be roughly estimated to understand the severity of the leakage conditions and to support the mitigation decision needed. • Mechanistic models simulate system responses to UGS facility operations. • Advanced monitoring technologies provide continuous update status for UGS facilities. • DTS data can provide real-time well leakage detection and identify leaky location. • Combination of models and advanced monitoring benefits UGS risk management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.