Abstract

Understanding the atomic-scale structure of wood microfibrils is essential for establishing fundamental properties in various wood-based research aspects, including moisture impact, wood modification, and pretreatment. In this study, we employed molecular dynamics simulations to investigate the arrangement of wood polymers, including cellulose, hemicellulose, and lignin, with a primary focus on the composition of softwood, specifically Norway Spruce wood. We assessed the accuracy of our molecular dynamics model by comparing it with available experimental data, such as density, Young's modulus, and glass transition temperature, which ensures the reliability of our approach. A key aspect of our study involved modeling the active sorption site for water interaction with wood polymers. Our findings revealed that the interaction between water and hemicellulose, particularly within the hemicellulose-cellulose interphase, was the most prominent binding site. This observation aligns with prior research in this field, further strengthening the validity of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.