Abstract

Artificial turf sport surface systems are comprised of a number of different materials. Improving the understanding of the sports surface system's response to actual player loading is important for developing enhanced products and system designs for improving play performance and durability. Previous research has tested and compared the mechanical properties of artificial turf systems with relatively simple mechanical tests intended to simulate loading from the player or ball. However, these test methods have known shortcomings in representing real in-service loading and it is often assumed a peak value of force or peak deformation is sufficient to describe the surface behaviour. Little literature exists that describes the force-deflection or stress- strain behaviour of artificial turf system under mechanical or player loading. This paper outlines methodologies developed for surface response measurement under real-time player movements including: the advanced measurement systems and data analysis methods for determining surface deflection/strain under player foot strike during a ground contact, and further evaluating the force-deflection and stress-strain relationships of the synthetic carpet-shockpad composite surface systems. The results show the ability of the surface system to accommodate the player applied loads by deforming to large strains with strong non-linearity and rate-dependent energy loss (hysteresis) in the load-unload phases. The contrast between the surface systems’ response to player loading using different shockpads is also presented and discussed. By combining these findings from the development of measurement techniques and the data analysis methods a new surface system evaluation regime is proposed for future studies into mechanical behaviour and cushioning response of artificial turf systems under player loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call