Abstract

Neuroscience studies have proved that the absence of proper tactile feedback can affect human behavior. A qualitative and quantitative growth in flexible artificial touch sensing technologies has been witnessed over the recent years. The development of flexible, sensitive, cost-effective, and durable artificial tactile sensors is crucial for prosthetic rehabilitation. Many researchers are working on realizing a smart touch sensing system for prosthetic devices. To mimic the human sensory system is extremely difficult. The practical uses of the newly invented techniques in the industry are limited by complex fabrication processes and lack of proper data processing techniques. Many compatible flexible substrates, materials, and strategies for tactile sensors have been identified to enhance the amputee population. This paper reviews the flexible substrates, functional materials, preparation methods, and several computational techniques for artificial tactile sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call