Abstract

Water-based evaporative cooling is emerging as a promising technology to provide sustainable and low-cost cold to alleviate the rising global cooling demand. Given the significant and fast progress made in recent years, this review aims to provide a timely overview on the state-of-the-art material design and engineering in water-based evaporative cooling. The fundamental mechanisms and major components of three water-based evaporative cooling processes are introduced, including direct evaporative cooling, cyclic sorption-driven liquid water evaporative cooling (CSD-LWEC), and atmospheric water harvesting-based evaporative cooling (AWH-EC). The distinctive requirements on the sorbent materials in CSD-LWEC and AWH-EC are highlighted, which helps synthesize the literature information on the advanced material design and engineering for the purpose of improving cooling performance. The challenges and future outlooks on further improving the water-based evaporative cooling performance are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.