Abstract

Oak Ridge National Laboratory has developed a unique rapid heating capability utilising a high density infrared (HDI) radiant plasma arc lamp. Power densities ≤3.5 W cm-2 are achievable over an area 35 x 3.175 cm. The power output of the lamp is continuously variable over a range from 1.5% to 100% of available power, and power changes can occur in <20 ms. Processing temperatures ≤3000°C can be obtained in a wide variety of processing environments, making HDI a flexible processing tool. Recently, this newly developed heating method was used to investigate selective softening, i.e. hardness reduction of 6063-T6 aluminium alloy. By changing the incident power and exposure time, the percentage reduction in hardness and softened zone size can be varied. It is shown that computer modelling can be used to predict the thermal history and the resulting heat affected zone during HDI processing. In the present work, a 50% reduction in hardness was achieved and confirmed by mechanical testing and microstructural investigation. Micrographs of softened aluminium show that Mg2Si precipitates had dissolved back into solution. This new approach allows materials to be engineered for a predetermined response to dynamic loading or other environmental situations. SE/S282

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.