Abstract
The low Coulombic efficiency and hazardous dendrite growth hinder the adoption of lithium anode in high-energy density batteries. Herein, we report a lithium metal-carbon nanotube (Li-CNT) composite as an alternative to the long-term untamed lithium electrode to address the critical issues associated with the lithium anode in Li-O2 batteries, where the lithium metal is impregnated in a porous carbon nanotube microsphere matrix (CNTm) and surface-passivated with a self-assembled monolayer of octadecylphosphonic acid as a tailor-designed solid electrolyte interphase (SEI). The high specific surface area of the Li-CNT composite reduces the local current density and thus suppresses the lithium dendrite formation upon cycling. Moreover, the tailor-designed SEI effectively separates the Li-CNT composite from the electrolyte solution and prevents the latter's further decomposition. When the Li-CNT composite anode is coupled with another CNTm-based O2 cathode, the reversibility and cycle life of the resultant Li-O2 batteries are drastically elevated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.